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Overview of multiphase flow work in Pitsch Group (Stanford University)

Primary focus area: Gas-liquid flows

* Detailed simulations (DS) of primary
breakup of liquid jets
— Unsolved problem; predictive models for
primary breakup unavailable
 Development of DS methodologies

for large density ratio, evaporating
Sprays — Dr. Mehdi Raessi, Vincent LeChenadec

e Spray combustion — Dr. Kun Luo

— Studies in a simplified gas turbine
combustor configuration

— Evaluate models

External collaboration:
Prof. Olivier Desjardins, U Colorado, Boulder ,
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Simulations of primary breakup of liquid jets in crossflow

NUMERICAL EXPERIMENT 4
SIMULATION a
M. G. Pai et al. AIAA (2009) Lee et al. (2007)

M. Pai et al. AIAA

(2009, 2010)
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Geometrical analysis«of liquid structures
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Goal

* Determine dependence of geometrical

properties of separated liquid structures
on interphase transfer processes

* Important and significant step toward
predictive primary breakup model
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M. Pai, Modeling breakup of turbulent liquid jets: Are we
asking the right questions? (In preparation)




Clustering across multiple scales

* Clustering observed in a
variety of systems
spanning the entire size
spectrum

* Nanoparticle synthesis,
nanomedicine, rain
formation, gas turbine
combustion, coal
gasification, fluidized beds,

* Clustering identified as a
principal hurdle in our
understanding of gas-solid
flows (NETL report, 2006)
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Motivation to study clustering

: vy
* Spray combustion | T(%

— Even at low volume fractions, certain spatial \ G G
configurations may lead to group combustion G G

modes (Chiu and Liu, 1977) G G
— Numerical models based on solitary droplets
(no interactions with neighboring droplets) \

do not capture physics associated with such Group Combustlon (schematic)
combustion modes

* Coal combustion: group combustion
modes observed (Annamalai & Ryan, PECS, 1993)

Need mathematical framework to capture the
effect of spatial configuration of droplets or
particles on physical processes
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Qutline of talk

Clustering has important
implications, but ...

e How does one characterize
clustering?

— |dentify statistical measure(s)

* Test in example problem:
Homogeneously cooling granular gas

e What determines the evolution of
the statistical measure(s)?

* QOutlook for future study
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How does one characterize clustering?

Single-point averaged descriptions

» Can number density or volume
fraction characterize clustering?

» Can generate two point fields
with same homogeneous
number density but different
spatial configurations (Stoyan
and Stoyan, 1994; Stoyan,
Kendall and Mecke, 1995), also
see example later

v Single-point statistics insufficient
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How does one characterize clustering?

Two-point descriptions

»Popular two-point statistic:
radial distribution function g(r)

» Does radial distribution function
characterize clustering?

»YES! Even in systems with same
homogeneous number density,
g(r) can distinguish spatial
configuration of dispersed
elements (see later)

v Need to understand quantities that determine evolution of g(r)
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Single-point distribution function

» Single-point distribution function
f(x,v,1)

gives probable number of particles in
(x,x + dx)(v,v 4+ dv)

» Can associate a number density n(X, t)
n(x,t) = /f(x, v,t) dv
» Mean number associated with a certain volume

(N}(VM):/ n(x,t)dx

Vi

Pai, Subramaniam, Pitsch NETL 2010 Multiphase Flow Workshop



Two-point distribution function

Two-point distribution function
2
f( >(X17 Vi, X2, V2, t)

» Determines collisions (cf. collisional integral in Boltzmann-
Enskog equation)

(Slight change in notation)

Marked
second-order
density

g)(xlaVlaXzaVz;t)

Particles can have “marks” such as
Velocity, Temperature, etc.

Pai, Subramaniam, Pitsch (Stoyan and Stoyan, 1994; Stoyan, Kendall and Mecke, 1995)



Two-point distribution function

(61, V1, x2,v2) = p) (1, %2)g5 (v, Vil xo)
|

Second-order density <
—p (x1,%2) = n(x1)n(x2)g(x1, x2)
— n29(r) assuming spatial homogeneity

) (x1,v1,%a,%2) = ng(r)gs (W, wr)

where W = V1i+ Vs
Upon further simplification W = V] — Vo

—>p<2>(X1, Xo) = nQQ(T) assuming isotropy
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Outline of talk

* Test in example problem:
Homogeneously cooling granular gas

Pai, Subramaniam, Pitsch NETL 2010 Multiphase Flow Workshop



Example: Homogeneously cooling granular gas

* Volume fraction: ~0.08 * Hard sphere collisions

*L/d:~100 e Event-driven algorithm
* N =150000 * Restitution coefficient: 0.5, 0.7, 0.9
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HCGG: Evolution of translational kinetic energy

100;
o'k Granular gas exhibits
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HCGG: Mean number vs measurement volume

NVM EZLZNVM

M — Number of
independent
realizations
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HCGG: Mean number vs measurement volume

Mean number T
(N) (V) = / n(x,t)dx osf
Vi |
If number density is ’EO-G;
homogeneous ; :
€ o4}
W) =n [ e T
VM e=0.5
s t=0
<N>(VM) — nVM i T=2684
Mean number is linear in Vj; % oz oi4lv o6 08

Number density is homogeneous !
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HCGG: Radial distribution function

3 =
» Increasing restitution . c=05
increases g(r) at contact 2or - &= g-g
B E=VU.
2: =0
» HCGG: an excellent ;
example for £15r
homogeneous point field i
. . 1 — _—
with clustering -
» Spatial point processes oo
provide more measures Oi
. sk R | ! I R R R A | ! [ R R SR S
than just g(r) o0 TS 0

*Stoyan and Stoyan, 1994; Stoyan, Kendall and Mecke, 1995
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HCGG: Fluctuations in number

Second Factorial Moment °f 1t T
a@BxB) = (NN-1) | T o [ F L
2F Iy
/ / (2) Xl, X2 Xm dX2 — i ' 1;1 "“;:z
NEIN 1.5 [ - 05
) =0
N2 B % B)> L nV(B) 3 1k > T=2684
Scaled Second Factorial Moment 05F ) 1 { I
(2) ok ;o= o= 1 liEme
SSFM:& (BXZB) L J\\..H|1 1 J..]...lz
(N (B)) 0 /s 10

SSEFM — 1 characterizes clustering

Poisson point field: SSFM =1
Stoyan and Stoyan, 1994; Stoyan, Kendall and Mecke, 1995
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Outline of talk

e What determines the evolution of
the statistical measure(s)?
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Evolution of p'2 (r,w,t)

Statistical homogeneity in position and velocity space
r = X1 — X9 W — V1] — V9
Evolution of marked second-order density
0
gy — o3 (r,w,t) + V, (wpfi)) + Vw - ((AA[r,w,t) ,ffb)) =0
Expected relative acceleration
(AA|r,w,t) = (AD|r, w t) — (AP |r, w, t)

A2
Integrating over w space q d’
0
— (2) : (2) _
(e ) + ¥, (<w|r Hp®) =0 )

Krall and Trivelpiece, Principles of Plasma Physics; Pai and Subramaniam, APS 2007; Markutsya and Subramaniam, 2010
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Evolution of 04(2)

Transforming (X1,x2) to (R,r) where R = x; + x5,
r = X1 — X9

e = V) [ A0y D
0B,

,r.

Conditional relative velocity

v'A negative component of conditional relative velocity along line
joining centers indicates a tendency to cluster
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HCGG: Conditional relative velocity (w;|7)

(w,|n/[u'(1-€)]

Ho 01\
Collapse at
contact (r = o)

when scaled using
u’(1-¢)

95%
confidence
o i intervals

0 P 1 =
10 I‘/Gm U r

v Negative component of conditional relative velocity
(along line joining centers) = tendency to cluster
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Outline of talk

Clustering has important implications,
but ...

* How does one characterize clustering?
— |dentify statistical measure(s)

e What determines the evolution of the
statistical measure(s)?

 Example problem: Homogeneously
cooling granular gas

* Conclusions/ Outlook for future study
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Characterization of clustering

v' Under homogeneous conditions, number density cannot
characterize clustering

v Under inhomogeneous conditions, number density is insufficient
to characterize clustering

» Spatial structure in an inhomogeneous point field can arise

due to:
Vn :gradients in the number density

,0(2), (N?), g(r) :second-order effects

- Need to distinguish the two contributions to accurately
capture effect of spatial structure on interphase transfer

processes
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Estimate for number density

v’ Estimating number density/ volume fraction from a single
snapshot may lead to erroneous results

— A homogeneous number density field can be misconstrued to be

inhomogeneous
T E : estimate for number density

ng
If single snapshot is used to 1
‘ | Tl g : analytical number density

estimate number density...

(VM)1/3

» Reminiscent of dependence of measured
thermodynamic density on microscopic length scales
(ref: Batchelor); Implications in LES of gas-solid flows?

» No separation of scales = Principal issue in
description of multiphase flows
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Conditional relative velocity <wr\7“>

v Negative conditional relative velocity indicates tendency to
cluster: key quantity to capture clustering (at level of second-order
statistics)

v BE model for collisional integral employs a decomposition of the

form f(2) (V17V2,X1’X2) X g(’l“)f(V1)f(V2)

v’ Assumption of molecular chaos? Granular gas develops long
range correlations in velocity as it cools; Poschel et al. (2002):
modified model for f%); Implications of model form on (w,.|r)?
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Dilute particle-laden turbulent flows

Time = 49.001

v

5.805e100
4.350e+00
2.900e+00
1.457¢+00

7441e-03

* Homogeneous particle-laden turbulent flow; decaying turbulence

v Exhibits preferential concentration; dilute flow = collisions
negligible; “clustering” due to particle motion in underlying gas
phase. What is the signature of <wr ‘7“> in this system?
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